• <del id="6o0ic"></del>
  • <del id="6o0ic"></del>
  • <strike id="6o0ic"><input id="6o0ic"></input></strike>
    <strike id="6o0ic"></strike>

    智能制造對計算機視覺技術的發展需求

    發布日期:2023-07-14 16:25:29   瀏覽量 :2140
    發布日期:2023-07-14 16:25:29  
    2140

    智能制造業中涉及大量檢測環節,如缺陷檢測、形變檢測、紋理檢測、尺寸檢測等。


    計算機視覺技術作為檢測領域目前最有效的方法之一,必然會在工業檢測的應用中掀起一場革命性的制造模式大轉變。它能再一次解放勞動力,大幅度提高制造業的生產效率,降低生產成本,減少生產環節,促使生產線全自動化的形成。


    但目前計算機視覺在智能制造工業檢測領域的實際應用存在諸多瓶頸問題尚未解決,其中3個關鍵的瓶頸問題值得研究討論。

    1) 實際智能制造業環境復雜、光源簡單,容易造成光照不均勻,難以解決圖像質量受光照影響大的問題。在檢測領域的實際應用中,由于工業場地環境變化的不確定性,會使計算機視覺的圖像采集環節受到影響。在工業檢測中,檢測的通常都是流水線上一致性很高的產品,需要檢測的缺陷通常也是相對微小的,因此對圖像的要求較高。除了保證相機的各參數一致以外,還需要控制環境因素的影響,這是工業檢測中特有的控制因素之一。由于環境變化隨機性大,使得控制光照成為智能制造檢測領域的計算機視覺關鍵瓶頸問題。


    2) 實際智能制造業中獲取萬級以上的平衡樣本數據代價較大,難以解決樣本數據不是以支持基于深度學習的計算機視覺檢測任務的問題。在所有學習方法中,樣本數據是最重要的因素之一。尤其是深度學習,往往需要非常大量的樣本才能達到比較優異的檢測效果。在一定數量級(欠學習)之內,樣本和檢測效果甚至成正比關系。而在智能制造業,樣本數據的采集卻是一大問題。因為企業追求利益,無法像做研究一樣順利進行樣本數據采集,甚至有些產品的總產量都達不到深度學習所需的樣本數據規模。


    3) 智能制造業中,計算機判定難以達到專業判定的水準,如何在算法中加入先驗知識以提高演化算法的效果是一大難題。如何有效利用先驗知識,降低深度學習對大規模標注數據的依賴,成為目前業內的主攻方向之一。由于先驗知識的形式多變,如何與深度學習有效結合是一大難點。具體到工業檢測領域,問題更加嚴峻,在需要解決上述問題的同時,還需要考慮如下難點:如何將比普通先驗知識更復雜的工業檢測專業知識轉化為知識圖譜等形式融入算法;如何建立工業檢測先驗知識的規范化、標準化和統一化;如何通過已有產品的先驗知識推測知識庫未收錄的其他類似產品的先驗知識。

    計算機
    檢測
    工業
    制造業
    電話:
    +86 571-88997956 18857195128
    地址:
    浙江省杭州市濱江區園區中路6號1號樓

    專業封測機,半導體組裝機,半導體測試機,無線模塊測試機,分選機廠家
    云計算支持 反饋 樞紐云管理
    主站蜘蛛池模板: 久久99精品国产99久久| 国产精品白丝AV嫩草影院| 国内精品久久久久| 日韩精品中文字幕第2页| 国产精品视频网站| 亚洲精品乱码久久久久久蜜桃不卡| 97久久精品人人澡人人爽| 精品无码国产自产拍在线观看| 国产精品永久久久久久久久久| 国产亚洲精品a在线无码| 亚洲国模精品一区| 国产色精品vr一区区三区| 国产精品久久国产精麻豆99网站| 午夜精品久久久久9999高清| 国产成人久久精品二区三区| 国产亚洲精品国产| 精品人妻大屁股白浆无码| 午夜国产精品无套| 国产精品男男视频一区二区三区 | 国产精品成人小电影在线观看| 精品国产一区二区三区不卡| 亚洲成网777777国产精品| 久久久久久噜噜精品免费直播| 青春草无码精品视频在线观| 成人精品视频在线观看| 久久久久人妻一区精品色| 欧美精品一区二区久久| 国产精品自在拍一区二区不卡| 老司机国内精品久久久久| 国产成人精品视频在放| 国产精品igao视频网| 无码精品视频一区二区三区| 北岛玲日韩精品一区二区三区| 欧美久久久久久午夜精品| 国内精品视频九九九九| 2021精品国产综合久久| 精品人妻大屁股白浆无码| 欧美精品VIDEOSSEX少妇| 日本内射精品一区二区视频 | 亚洲午夜精品久久久久久人妖 | 久久精品亚洲精品国产色婷|